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Abstract

In this paper a single-degree-of-freedom model is developed to predict the dynamic response of an
acoustially excited doubly curved sandwich panel. Three variants of the model are investigated, based on
differing assumptions regarding the spatial distribution of the applied loading. When the loading is
assumed to be uniform then the model reduces to the Miles approach, and when the loading is assumed to
conform to the structural mode shape then the method is very similar to the Blevins approach. The third
variant involves a more detailed consideration of the travelling wave characteristics of the applied loading,
and this is found to give much improved agreement with experimental results obtained in a progressive
wave tube facility. In addition, an approach using the finite element method is presented in which the
response to grazing incidence excitation is computed, and this is also found to yield good agreement with
the experimental results.
r 2002 Elsevier Science Ltd. All rights reserved.

1. Introduction

Composite materials are becoming more widespread in the construction of aircraft secondary
and tertiary structures due to the need for low weight and hence reduced fuel costs and greater
range. Sandwich panels are one particular type of composite construction that have many
applications such as in flooring panels, fairings, flap construction, tail-cones, and engine intake
barrel panels.
Following an examination of the current design guidelines [1] adopted for composite structures,

it is apparent that there is a need for more advanced response prediction models for doubly curved
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composite honeycomb sandwich structures subject to random acoustic excitation. Various
investigations have been conducted in the past on metallic and composite structures [1–6]. These
studies have involved the comparison of measured and predicted stresses/strains, and in general
the results have indicated a bias in which estimates appear to be greater than measurements by a
factor of about two [5].
In this paper, several approaches are presented for predicting the dynamic response of a set of

four doubly curved, composite honeycomb sandwich panels. A complementary experimental
investigation was also carried out to determine the strain response of a set of doubly curved test
panels to broadband random acoustic excitation using a PWT facility, and details of this work can
be found in Part 1 of this study [7].
Various methods of predicting the dynamic response of doubly curved composite honeycomb

sandwich structures to random acoustic excitation, are presented in this paper. The first is based
on the single-degree-of-freedom (s.d.o.f.) approach, where the modes of vibration are assumed to
be lightly damped and well separated. The predominant mode of vibration is therefore treated as a
s.d.o.f. system. The equations for a system subject to random excitation are developed in this
paper, and are applied to the case of the doubly curved sandwich panels. Three different variants
of the method are investigated, which involve estimating the spatial characteristics of the pressure
loading. The finite element model, presented in a recent publication [8], was then used to provide
the modal inputs to the equations from which the r.m.s. response was calculated. The results are
compared with the r.m.s. measured response as presented in Part 1 of this study. Comparisons are
also made with the solution using Blevins method [6]. Finally, the finite element model is used to
predict the response by considering the load as a series of travelling harmonic waves at grazing
incidence to the surface of the structure. The harmonic solution is then used, together with the
measured pressure spectrum, to arrive at an estimate of the strain power spectral density (PSD),
which is again compared with the measured strain PSD. Conclusions are drawn concerning the
advantages and disadvantages of the three dynamic response prediction methods, and
recommendations are made for further work.

2. The single-degree-of-freedom approximation

At low frequencies the modes of vibration of a structure tend to have a frequency spacing
that is large in comparison to the modal bandwidth. In this case it is reasonable to neglect
any resonant response overlap that might arise between the modes through the action of damping,
and the dynamics of a single mode of vibration can be considered in isolation of the other
modes. The problem formulation and solution procedure outlined in this section are based on the
standard methods of linear random vibration analysis (see for example Refs. [9,10]). The
response uðx; tÞ associated with a single mode of vibration (say the nth mode) can be written in the
form

uðx; tÞ ¼ wnðtÞfnðxÞ; ð1Þ

Z
A0

mf2
nðxÞ dx ¼ 1; ð2Þ
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where x ¼ ðx1x2Þ represents the spatial co-ordinates of a point on the structure, wnðtÞ is the modal
amplitude, and fnðxÞ is the mode shape, which is taken to be scaled to unit generalized mass in
accordance with Eq. (2), where m is the mass per unit area and A0 represents the mid-plane
surface. For a curved panel, uððxÞ; tÞ is taken to be the normal component of the panel
displacement, and x1 and x2 are curvilinear co-ordinates that lie in the panel mid-surface. In this
case the left-hand side of Eq. (2) should strictly include the generalized mass arising from the
tangential displacements, although for bending type modes (of interest here) these terms will be
very small. The equation of motion that governs the amplitude wnðtÞ has the form

.wn þ 2znon ’wn þ o2
nwn ¼ FnðtÞ; ð3Þ

where on is the natural frequency, zn is the non-dimensional viscous damping ratio, and FnðtÞ is
the generalized force, given by

FnðtÞ ¼
Z

A0

pðx; tÞfðxÞ dx: ð4Þ

Here pðx; tÞ is a random distributed pressure, and it is clear that the power spectral density SFF ðoÞ
of FnðtÞ will depend on the statistical properties of pðx; tÞ: In general,

SFF ðoÞ ¼
Z

A0

Z
A0

Sðx; x0;oÞfnðxÞfnðx
0Þ dx dx0; ð5Þ

where

Sðx;x0;oÞ ¼
1

2p

� �Z
N

�N

E½pðx; tÞpðx0; t þ tÞ�e�iot dt ð6Þ

is the cross-spectrum of the pressure at the points x and x0: The present work is concerned with the
development of a straightforward approximate method of predicting the system response, and to
this end it is helpful to consider a special case of Eq. (6). In general, the pressure can be fully
random in both time and space; a more restricted situation arises when the spatial pressure
distribution can be deduced from the knowledge of the pressure at a single reference point, i.e., a
frequency-dependent transfer function Hðx;oÞ exists between the pressure at the point x and the
pressure at the reference point. In this case Eq. (6) becomes

Sðx;x0;oÞ ¼ Hðx;oÞHnðx0;oÞSppðoÞ; ð7Þ

where SppðoÞ is the spectrum of the reference pressure. Specific examples of this type of loading,
which are discussed in more detail in the follow sub-sections, are: uniform pressure loading
Hðx;oÞ ¼ 1; a pressure distribution matched to the vibration mode shape Hðx;oÞ ¼ fnðxÞ; and
finally travelling wave excitation Hðx;oÞ ¼ expð�ik1x1 � ik2x2Þ; where k1 and k2 are the
appropriate wavenumbers. If Eq. (7) is applicable then the spectrum of the generalized force,
Eq. (5), becomes

SFF ðoÞ ¼
Z

A0

Hðx;oÞfnðxÞ dx

����
����
2

SppðoÞ: ð8Þ

If the system is lightly damped then the excitation can be approximated to white noise, at least
over the modal bandwidth, and Eq. (3) can be solved to yield the following closed-form expression
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for the mean squared modal response [10]:

s2w ¼
pSFF ðonÞ
4zno3

n

: ð9Þ

Various special cases of Eq. (9) are now considered, arising from various pressure transfer
function descriptions Hðx;oÞ:

2.1. Case 1: Hðx;oÞ ¼ 1

In this case the pressure is taken to be uniform over the structure, as assumed by Miles [11] and
adopted in the ESDU data sheets [1]. The spectrum of the generalized force, Eq. (8), can be
written in the form

SFF ðoÞ ¼ o2
nw2

statSppðoÞ; ð10Þ

where

wstat ¼ ð1=o2
nÞ
Z

A0

fnðxÞ dx: ð11Þ

Here wstat is the static displacement of the system under a uniform pressure loading of unit
intensity. Eq. (9) then becomes

s2w ¼
ponSppðonÞ

4zn

w2
stat; ð12Þ

which agrees with the established literature [11,2]. The mean squared strain at any point in the
system then follows:

s2e ¼
pfnSppðfnÞ

4zn

e2stat; ð13Þ

where estat is the static strain at that point caused by a unit pressure load, and the radian frequency
on has been re-expressed in Hz, fn: It can be noted that the strain estat can also be written in the
form

estat ¼
%e

4p2f 2
n

Z
A0

fnðxÞ dx; ð14Þ

where %e is the strain at the point of interest associated with a deflection in the form of the mode
shape fnðxÞ:

2.2. Case 2: Hðx;oÞ ¼ fnðxÞ

This is a form of ‘‘worst case’’ in which the pressure distribution is perfectly matched to the
mode shape. Assuming that the mass per unit area m is constant over the system, Eqs. (2) and (8)
yield

SFF ðoÞ ¼
Z

A0

f2
nðxÞ dx

����
����
2

SppðoÞ ¼ SppðoÞ=m2: ð15Þ
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In this case Eq. (9) becomes

s2w ¼
SppðfnÞ

64p3znf 3
n m2

: ð16Þ

Now SppðoÞ is the spectrum of the reference pressure, pðtÞ say, defined in the present case ðH ¼ fnÞ
such that the pressure at location x is given by pðx; tÞ ¼ fnðxÞpðtÞ: The spatial average of the
pressure spectrum over the surface of the system is thus given by /Sppðx;oÞSx ¼ ð1=mAÞSppðoÞ;
where A is the surface area. Eq. (16) can therefore be written in the alternative form

s2w ¼
/Sppðx; fnÞSx
64p3znf 3

n

A

m

� �
: ð17Þ

Similarly, the mean squared strain at a particular point can be written as

s2e ¼
/Sppðx; fnÞSx
64p3znf 3

n

A

m

� �
%e2; ð18Þ

where %e is the strain at the point of interest associated with the mode shape fnðxÞ; as defined
previously.

2.3. Case 3: general Hðx;oÞ

In general, the spectrum of the pressure at the location x can be written in the form Sppðx; f Þ ¼
jHðx; f Þj2Sppðf Þ; where Sppðf Þ is the spectrum of the reference pressure. It then follows that the
space average of the pressure spectrum is given by

/Sppðx; f ÞSx ¼
Sppðf Þ

A

Z
A0

jHðx; f Þj2 dx ð19Þ

Eqs. (8), (9), and (19) then lead to the results

s2w ¼
/Sppðx; fnÞSx
64p3znf 3

n

A

m

� �
J2

n ð20Þ

and

s2e ¼
/Sppðx; fnÞSx
64p3znf 3

n

A

m

� �
%e2J2

n ; ð21Þ

where

J2
n ¼

j
R

A0
Hðx; f ÞfnðxÞ dxj

2

R
A0

jHðx; f Þj2 dx
R

A0
f2

n dx
: ð22Þ

The term J2
n is a form of ‘‘joint acceptance’’ between the mode shape and the pressure distribution.

The maximum value of J2
n occurs for Case 2 ðHðx; f Þ ¼ fnÞ where J2

n ¼ 1:

2.4. Estimation of the r.m.s. strain response using the single-degree-of-freedom approximation

In order to estimate the r.m.s. strain response of the four test panels using the s.d.o.f.
approximations developed previously, calculation of the mode shapes and natural frequencies of
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vibration is required, whilst the applied pressure spectrum at the reference point in the PWT and
the viscous damping ratio are measured quantities given in Part 1 of this study [7].

2.4.1. Natural frequency of vibration, mode shapes, and modal strains

A finite element analysis was performed in order to determine the natural frequencies of
vibration, the mode shapes, and associated modal strains, and the latter two quantities were
normalized in accordance with the unit generalized mass matrix. This was done using the FE
models developed and reported in a recent publication [8] with spring supported boundary
conditions, as shown in Fig. 1 for panel 1 (the physical properties of the various panels considered
here are given in Part 1 [7] and in Refs. [8,12]). The modal direct strains were recovered for each of
the five inner and outer strain gauge locations. All of the modal strains were calculated for the
predominant mode of vibration excited by the PWT, in this case mode 2 for panels 1–3, and mode
3 for panel 4, and are given in Table 1.

2.4.2. Reference pressure spectrum level, SppðfnÞ and modal damping, zn

The r.m.s. acoustic pressure applied to the panels was obtained from the measurements taken
using the microphone located in the aperture of the PWT, as reported in Part 1 of this study. The
spectra were ensemble averaged during the FFT process, which was carried out using Welch’s
method [13]. Despite this averaging, the spectrum levels still appeared to contain a fair degree of
noise, as can be seen in Fig. 2, which shows the levels at each OASPL for panel 1. To this end, and
for the purposes of the s.d.o.f. method used in the analysis, the spectrum levels at each OASPL
were averaged over the mean-square bandwidth centred on the fundamental response frequency
excited by the PWT. This was carried out using the method proposed by Newland [10]. For the
case of a s.d.o.f. system, the mean-square bandwidth is [10] (Fig. 3)

Bs2 ¼ pznon: ð23Þ

The levels are then smoothed by averaging over n adjacent spectra using [10]

#SppðfkÞ ¼
1

ð2n þ 1Þ

Xn

m¼�n

*SppðfkþmÞ: ð24Þ

Both the noisy and smoothed spectra are presented, and as can be seen there is a certain degree of
variability in the spectrum levels, which was obviously not as apparent in the decibel plots
presented in Part 1 of this study due to the logarithmic scale. This variability will introduce a
certain amount of uncertainty in the predicted response, and to this end the standard deviation in
the smoothed spectrum level over the mean-square bandwidth is presented along with the average
spectrum levels in Table 2 so that a feel for the degree of uncertainty in the results can be
obtained. The near regular spacing of the smoothed peaks in Fig. 2 suggests that the variability in
the spectrum level arises from acoustic reflections from the first bend in the PWT duct
downstream of the test aperture.
The final value needed for the s.d.o.f. calculations is the modal damping for the predominant

mode excited by the PWT, which was obtained from the experimental measurements using the
half-power point method. The damping values for each panel are given in Part 1 [7] in the form of
equivalent viscous damping ratios.
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(a) FE model of panel 1

(b) Panel 1 modal displacement (c) Panel 2 modal displacement

(d) Panel 3 modal displacement (e) Panel 4 modal displacement

Fig. 1. FE model of panel 1, and calculated modal displacement associated with the fundamental frequency of

vibration excited by the PWT for the four test panels: (a) FE Model of panel 1; (b) panel 1 modal displacement; (c)

panel 2 modal displacement; (d) panel 3 modal displacement; and (e) panel 4 modal displacement.

P.R. Cunningham et al. / Journal of Sound and Vibration 264 (2003) 605–637 611



2.4.3. Comparison of experimental and theoretical results for r.m.s. strain
In order to compare the estimated results for r.m.s. strain with the experimental results it was

necessary to adjust the latter since the s.d.o.f. calculations are based around the resonant response
frequency of interest while the experimental measurements were an overall r.m.s. value over a
1000 Hz bandwidth. The mean-square bandwidth of the approximation method is obviously
much smaller than the response bandwidth of the experiments, and therefore in order to scale the
experimental results, the percentage contribution of the predominant mode excited by the PWT to
the overall response was used as the scaling factor. This was obtained from the plots of the
normalized integral across the strain power spectral density, examples of which can be found in
Part 1 of this study. The resulting narrowband scaling factors for each of the strain gauges and for
each panel are given in Table 3.
For Case 1, the integral of the mode shapes (required in Eq. (11)) were found to be 3:70
 10�3;

3:80
 10�3; 1:70
 10�3; and 8:20
 10�3 m2=kg1=2 for panels 1–4, respectively. Using Eq. (13)
together with the calculated (FE) modal strains given in Table 1 and the natural frequency of
vibration, the narrowband pressure spectrum levels given in Table 2, and the previously measured
damping value for the fundamental mode, the estimates for the strain response were calculated,
and are presented in Table 4. The results are significantly lower than the measured strains which
are given in Table 5, even after the latter have been scaled to account for the estimated response
being centred on the fundamental response resonance frequency of the first bending mode. The
reason for the very low theoretical prediction can be traced to the fact that the panel is located in
the PWT aperture by using circular steel springs. This arrangement leads to a fundamental mode
that is almost a rigid-body translation, and which therefore has almost the same spatial
distribution as a uniform pressure load. This mode is orthogonal to all the higher modes of the
panel, and thus the integral of a higher mode shape multiplied by a constant will be almost zero,
i.e., the integral that appears in Eq. (11) will be very small. Thus a uniform pressure load produces
almost no excitation of the mode selected for the theoretical prediction (the first bending mode,
based on the experimental results of Part 1 [7]), and a very small strain is predicted. The problem
with the prediction is not that the wrong mode has been selected, but rather that the actual
pressure loading is very different from a uniform distribution, as discussed in what follows.
The theoretical results for Case 2, where the spatial distribution of the pressure loading is

assumed to exactly match the mode shape, are given in Table 6. As can be seen, this assumption
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Table 1

Calculated (FE) modal strains for each strain gauge location and for each test panel (the modal strains have been

normalized with respect to unit generalized mass in the FE calculations)

Panel Modal strain ðe
 103Þ

gi1 gi2 gi3 gi4 gi5 go1 go2 go3 go4 go5

1 126.6 221.7 233.4 87.4 84.1 287.9 171.3 176.3 294.9 284.1

2 162.9 163.3 168.8 164.0 160.0 237.2 130.9 131.2 204.2 198.3

3 53.0 312.3 349.6 64.1 63.5 199.0 257.4 278.8 144.9 140.3

4 86.6 446.7 501.7 93.1 93.3 155.3 160.8 176.1 101.5 98.7

Details of the gauge locations are given in Ref. [7].
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leads to an overestimate of the response compared with the scaled measured strains given in
Table 4. This is understandable since the assumption that the spatial distribution of the pressure
load exactly matches the mode shape of the panel is unlikely in practice. This assumption was
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(c) 154.75 dB (d) 159.28 dB

(e) 163.71 dB

Fig. 2. Spectrum levels of acoustic pressure for panel 1 tests and for each OASPL. Original spectrum (–), smoothed

spectrum (thick line) with n ¼ 20 (see Eq. (24)): (a) 143:29 dB; (b) 149:97 dB; (c) 154:75 dB; (d) 159:28 dB; and (e)

163:71 dB:
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Uniform
pressure
loading

Undeformed
panel

Deformed mode
shape (illustrative)

Spring locations

x

z

Fig. 3. Illustration of the uniform pressure loading (Case 1 assumption) and resulting fundamental mode of response of

the doubly curved test panels located in the PWT.

Table 2

OASPL and associated single-sided broadband pressure spectrum levels for the four panel tests in the PWT

Panel OASPL %SppðfnÞ Standard deviation

(dB) ðPa2=HzÞ ðPa2=HzÞ

1 143.29 174.9 9.2

149.97 869.8 18.7

154.75 2839.5 106.8

159.28 7448.6 396.7

163.71 21230.0 471.3

2 143.88 138.6 7.6

149.91 492.8 98.9

154.92 1484.9 170.4

159.00 3488.7 345.5

163.09 9776.6 983.4

3 143.51 183.1 23.7

149.93 774.2 160.8

154.18 2535.9 474.6

158.84 6661.0 821.5

162.82 17614.0 1615.4

4 143.20 271.3 11.3

149.49 1340.1 30.0

154.69 4426.6 122.8

159.49 12472.0 525.8

163.71 29374.0 2551.2
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investigated further by Blevins [6], and will be covered in the next section. It can be seen that Cases
1 and 2 provide the lower and upper bounds on the response, hence a more accurate estimation of
the nature of the applied loading will be required in order the arrive at an improved estimate.
The joint acceptance for a general loading distribution was defined previously (see Eq. (22)). In

order to arrive at an improved prediction of the dynamic strain response, a realistic estimate of the
spatial distribution of the pressure must be provided. Since the test panels were located in a PWT,
the excitation can be considered to be travelling acoustic waves at grazing incidence. Assuming
that the waves are uni-directional, travelling along the axis of the duct, the spatial distribution of
the pressure loading can be written in the form

Hðx1; f Þ ¼ e�ikax1 ; ð25Þ

where ka ¼ on=c is the acoustic wavenumber, on is the natural frequency of vibration of the
relevant mode of the test panel ðon ¼ 2pifnÞ; and c is the speed of sound which is approximately
343 m=s at sea level with standard atmospheric conditions, and x1 is the position along the long
side dimension of the panel. Eq. (25) arises from the Fourier transform of a travelling wave
pressure field of the form pðx1; tÞ ¼ pð0; t � x1=cÞ: A rapid estimate of the joint acceptance can be
obtained by using the results for the mode shape from the FE modal analysis. By summing the
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Table 3

Narrowband scaling factors applied to the experimental r.m.s. strain measurements

Panel OASPL Narrowband scaling factor

(dB) gi1 gi2 gi3 gi4 gi5 go1 go2 go3 go4 go5

1 143.29 0.88 0.88 0.84 0.85 0.80 0.93 0.77 0.75 0.87 0.88

149.97 0.89 0.88 0.85 0.86 0.82 0.94 0.80 0.77 0.87 0.88

154.75 0.90 0.90 0.87 0.87 0.84 0.94 0.83 0.80 0.90 0.90

159.28 0.90 0.90 0.87 0.87 0.85 0.94 0.83 0.80 0.90 0.90

163.71 0.93 0.92 0.90 0.91 0.89 0.96 0.87 0.85 0.93 0.93

2 143.88 0.86 0.91 0.91 0.90 0.85 0.91 0.91 0.89 0.94 0.93

149.91 0.88 0.91 0.91 0.90 0.83 0.91 0.92 0.90 0.94 0.92

154.92 0.83 0.87 0.87 0.86 0.79 0.88 0.89 0.87 0.92 0.88

159.00 0.85 0.89 0.89 0.88 0.79 0.89 0.91 0.89 0.93 0.89

163.09 0.88 0.91 0.91 0.89 0.82 0.90 0.93 0.91 0.94 0.91

3 143.51 0.80 0.82 0.81 0.25 0.27 0.82 0.79 0.80 0.33 0.43

149.93 0.74 0.82 0.81 0.23 0.25 0.83 0.79 0.81 0.33 0.38

154.18 0.76 0.85 0.84 0.26 0.28 0.86 0.83 0.84 0.38 0.41

158.84 0.76 0.86 0.85 0.27 0.28 0.87 0.83 0.85 0.41 0.43

162.82 0.78 0.88 0.88 0.33 0.32 0.89 0.86 0.88 0.48 0.49

4 143.20 0.77 0.69 0.72 0.61 0.78 0.72 0.54 0.55 0.09 0.24

149.49 0.75 0.74 0.77 0.66 0.81 0.77 0.59 0.62 0.11 0.16

154.69 0.77 0.79 0.81 0.70 0.85 0.81 0.64 0.66 0.14 0.18

159.49 0.80 0.82 0.83 0.74 0.87 0.85 0.68 0.70 0.18 0.21

163.71 0.82 0.84 0.84 0.76 0.89 0.87 0.70 0.72 0.19 0.23
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modal displacemements for the mode shape in question, and multiplying by the area of the panel
divided by the number of nodes, an estimate of the integral of the mode shape is obtained. The
expression for the joint acceptance (Eq. (22)) therefore becomes

J2
n ¼

j
PN

j¼1 fje
�ikaxj j2PN

j¼1 je�ikaxj j2
PN

j¼1 f2
j

; ð26Þ

where fj is the modal displacement at each node j for the mode shape in question, xj is the nodal
co-ordinate in the x direction (along the long side of the panel) for each node j; and N is the
number of nodes in the FE model.
The r.m.s. strain results for Case 3, obtained by employing Eq. (26), are given in Table 7. A

comparison is made with the measured r.m.s. strains, which have been scaled according to the
percentage contribution of the fundamental mode response to the overall r.m.s. measured strains,
using the scale factors given in Table 3. The comparison for each panel is shown in Figs. 4 and 5.
The results show excellent agreement between measured and predicted values, with the majority of
the results falling within a 730% confidence band. This is a very favourable result when one
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Table 4

Estimated r.m.s. strain for the 10 strain gauges located on the four test panels. Single-degree-of-freedom approximation

method (Case 1—uniform pressure loading assumption)

Panel fn zn

R
ffngi dA Sppðf Þ Estimated r.m.s. strain ðmeÞ

(Hz) ðm2=kg1=2Þ ðPa2=HzÞ gi1 gi2 gi3 gi4 gi5 go1 go2 go3 go4 go5

1 219.02 0.0105 3.70e–3 174.9 0.42 0.73 0.77 0.29 0.28 0.95 0.57 0.58 0.98 0.94

869.8 0.93 1.64 1.72 0.65 0.62 2.12 1.26 1.30 2.18 2.10

2839.5 1.69 2.95 3.11 1.17 1.12 3.84 2.28 2.35 3.93 3.79

7448.6 2.73 4.79 5.04 1.89 1.82 6.21 3.70 3.81 6.36 6.13

21230 4.61 8.08 8.50 3.19 3.06 10.49 6.24 6.43 10.75 10.35

2 164.30 0.0120 3.80e–3 138.6 0.71 0.71 0.74 0.71 0.70 1.04 0.57 0.57 0.89 0.86

492.8 1.34 1.34 1.39 1.35 1.31 1.95 1.07 1.08 1.68 1.63

1484.9 2.32 2.33 2.40 2.34 2.28 3.38 1.87 1.87 2.91 2.83

3488.7 3.56 3.57 3.69 3.58 3.50 5.18 2.86 2.87 4.46 4.33

9776.6 5.95 5.97 6.17 5.99 5.85 8.67 4.79 4.80 7.47 7.25

3 272.62 0.0125 1.70e–3 183.1 0.05 0.32 0.36 0.07 0.07 0.20 0.26 0.29 0.15 0.14

774.2 0.11 0.66 0.74 0.14 0.13 0.42 0.54 0.59 0.31 0.30

2535.9 0.20 1.19 1.34 0.25 0.24 0.76 0.98 1.06 0.55 0.54

6661.0 0.33 1.93 2.16 0.40 0.39 1.23 1.59 1.73 0.90 0.87

17614 0.53 3.14 3.52 0.65 0.64 2.00 2.59 2.81 1.46 1.41

4 288.67 0.0102 8.20e–3 271.3 0.53 2.73 3.07 0.57 0.57 0.95 0.98 1.08 0.62 0.61

1340.1 1.18 6.08 6.82 1.27 1.27 2.11 2.19 2.40 1.38 1.34

4426.6 2.14 11.04 12.40 2.30 2.31 3.84 3.98 4.35 2.51 2.44

12472 3.59 18.54 20.82 3.87 3.87 6.45 6.67 7.31 4.21 4.10

29374 5.51 28.45 31.95 5.93 5.94 9.89 10.24 11.21 6.47 6.29
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considers that the current design guidelines are reported to give results within a factor of 2
compared with measured data [5].
Finally, the outer-to-inner r.m.s. predicted strain ratios are given in Table 8, for comparison

with the measured ratios presented in Part 1. The predicted ratios were found to remain constant
with increasing OASPL. The ratios for gauges 2 and 3 compare very well with the average
measured ratios for panels 1, 2, and 3, whereas for panel 4 the predicted ratio is slightly lower
compared with the measured ratio. Gauges 4 and 5 show similar results except for panel 1 which
shows a higher predicted ratio compared with the measured ratio.

3. Application of Blevins’ normal mode method

A modification of the classical Miles [11] equation has been proposed by Blevins [6]. In this
study, the spatial characteristics of both the structural modes and the sound field were considered
simultaneously and related in order to arrive at a method that extended the Miles approach to
higher modes and complex shapes. In general, for a linear elastic plate or shell structure excited by
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Table 5

Measured r.m.s. strain for the 10 strain gauges located on the four test panels

Panel Sppðf Þ Measured r.m.s. strain (scaled) ðmeÞ

ðPa2=HzÞ gi1 gi2 gi3 gi4 gi5 go1 go2 go3 go4 go5

174.9 7.9 10.5 10.7 5.7 4.5 14.7 7.6 8.3 14.4 12.9

869.8 16.2 23.4 24.1 11.6 8.9 32.4 16.9 18.5 31.9 27.5

1 2839.5 28.7 42.0 43.8 19.4 15.9 57.9 30.9 33.8 58.2 49.8

7448.6 49.7 72.6 75.5 31.7 27.7 101.2 53.2 58.2 100.9 86.2

21230 92.9 134.3 139.9 60.7 52.9 189.1 99.1 108.7 189.1 161.4

138.6 6.4 7.7 7.3 6.0 6.0 9.3 6.6 5.6 8.5 8.6

492.8 11.5 15.3 14.4 11.5 11.1 18.6 13.1 11.0 16.9 15.5

2 1484.9 17.3 23.8 22.4 17.8 17.0 29.0 20.8 17.6 26.4 23.6

3488.7 30.0 41.5 39.1 31.0 29.3 50.6 36.9 31.2 45.9 40.6

9776.6 51.9 71.5 67.2 53.3 51.2 87.1 64.0 54.8 78.6 69.8

183.1 4.0 9.2 9.5 1.2 1.3 7.2 7.8 8.4 3.5 4.6

774.2 5.9 19.4 20.1 2.1 2.2 15.4 16.9 18.3 7.4 7.9

3 2535.9 9.5 35.0 36.4 3.8 4.0 27.1 30.3 33.1 13.6 13.8

6661.0 15.8 60.5 63.0 6.6 6.7 47.7 51.4 56.6 25.1 24.2

17614 27.2 107.4 111.0 12.8 12.2 82.7 89.2 98.5 48.3 45.3

271.3 4.5 10.5 13.1 2.5 3.8 4.2 3.9 4.1 0.9 2.4

1340.1 8.0 26.9 33.5 5.6 8.0 9.7 9.7 10.5 2.3 3.3

4 4426.6 14.9 55.1 67.5 11.0 15.8 19.6 19.6 21.4 5.4 6.3

12472 28.6 110.4 132.6 20.9 30.8 39.0 38.4 41.8 11.7 12.9

29374 47.8 182.7 215.7 34.5 50.6 65.4 63.4 69.0 19.9 22.1

Scaled using narrowband scaling factors given in Table 3.
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an acoustic pressure over the entire surface, the response of each mode is given by [6]

ð1=o2
nÞ .wnðtÞ þ ð2zn=onÞ ’wnðtÞ þ wnðtÞ ¼ JpðtÞ; ð27Þ

where

J ¼

R
*pnðxÞ *wnðxÞ dx

o2
n

R
m *w2

nðxÞ dx
ð28Þ

is the modal joint acceptance which is constant for each mode. The equations have been written in
the notation used by Blevins, where *pn defines the spatial characteristics of the pressure field
(equivalent to Hðx; f Þ which is used in the present work), *wn is the response mode shape, and the
other symbols have their usual meanings. As can be seen, the time and spatial dependence of the
response have been separated, which allowed solutions to be generated independently and later
assembled to give the complete solution [6]. The remainder of the study [6] concentrated on the
approximation of the joint acceptance, J. Blevins noted that for aircraft applications where,
generally, the acoustic pressure load has a very rich frequency content and complex distribution,
the determination of J by means such as estimation from historical data, measurement from a
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Table 6

Estimated r.m.s. strain for the 10 strain gauges located on the four test panels. Single-degree-of-freedom approximation

method (Case 2—unit joint acceptance assumption)

Panel Sppðf Þ Estimated r.m.s. strain ðmeÞ

ðPa2=HzÞ gi1 gi2 gi3 gi4 gi5 go1 go2 go3 go4 go5

174.9 33.95 59.44 62.57 23.44 22.54 77.18 45.93 47.28 79.06 76.17

869.8 75.71 132.54 139.52 52.28 50.27 172.11 102.43 105.43 176.30 169.85

1 2839.5 136.78 239.48 252.09 94.46 90.82 310.98 185.07 190.49 318.55 306.89

7448.6 221.54 387.87 408.30 152.99 147.10 503.67 299.74 308.52 515.93 497.06

21230 374.02 654.82 689.31 258.28 248.34 850.32 506.04 520.86 871.02 839.16

138.6 55.30 55.46 57.29 55.70 54.34 80.54 44.45 44.55 69.32 67.35

492.8 104.27 104.57 108.03 105.02 102.47 151.87 83.81 84.00 130.72 126.99

2 1484.9 180.99 181.52 187.53 182.30 177.87 263.62 145.48 145.82 223.92 220.44

3488.7 277.43 278.22 287.45 279.43 272.65 404.08 222.99 223.51 347.81 337.89

9776.6 464.42 465.75 481.20 467.78 456.42 676.44 373.30 374.16 582.25 565.63

183.1 9.40 55.41 62.04 11.37 11.27 35.32 45.68 49.46 25.70 24.90

774.2 19.33 113.94 127.57 23.37 23.18 72.62 93.93 101.71 52.86 51.21

3 2535.9 34.98 206.21 230.88 42.30 41.95 131.43 169.99 184.08 95.66 92.67

6661.0 56.69 334.20 374.19 68.56 67.99 213.00 275.51 298.33 155.04 150.20

17614 92.19 543.46 608.49 111.49 110.57 346.38 448.01 485.13 252.12 244.24

271.3 19.00 98.02 110.09 20.44 20.47 34.08 35.28 38.64 22.27 21.66

1340.1 42.23 217.85 244.67 45.43 45.50 75.75 78.43 85.87 49.50 48.15

4 4426.6 76.75 395.93 444.67 82.56 82.70 137.68 142.55 156.07 89.97 87.51

12472 128.82 664.59 746.40 138.59 138.81 231.10 239.27 261.96 151.02 146.89

29374 197.70 1019.93 1145.48 212.68 213.03 354.66 367.20 402.03 231.77 225.43
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number of microphones, or analytical prediction is by no means a simple task. This is particularly
true for intake ducts where the acoustic pressure load consists of discrete tones superimposed on a
broadband spectrum with a very complex spatial distribution along the duct. To this end, several
approximations were suggested, such as *pnðxÞ ¼ 1; a constant over the surface which is basically
the Miles approach. The approximation is most applicable when the acoustic half-wavelength
exceeds the lateral dimensions of the panel. However, the disadvantage of this approximation is
that it is incapable of showing any excitation of antisymmetric modes, hence its restriction to the
fundamental mode of fully clamped plates. Other suggestions included a Signð *wnðxÞÞ function,
sinusoidal functions, and finally the mass-weighted structural mode shape. The latter involves
matching a point on the surface of the panel (generally the point of maximum displacement) to the
applied sound pressure level, as opposed to using a unit pressure over the entire surface.
Substituting,

*pnðxÞ ¼ o2
nm *wnðxÞ ð29Þ

the mass-weighted mode shape approximation, into Eq. (28) and integrating, produces a joint
acceptance of J ¼ 1: A crude estimation of the influence of the joint acceptance in Blevins
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Table 7

Estimated r.m.s. strain for the 10 strain gauges located on the four test panels. Single-degree-of-freedom approximation

method (Case 3—estimated joint acceptance assumption)

Panel Sppðf Þ Estimated r.m.s. strain ðmeÞ

ðPa2=HzÞ gi1 gi2 gi3 gi4 gi5 go1 go2 go3 go4 go5

174.9 8.94 15.65 16.47 6.17 5.94 20.32 12.09 12.45 20.82 20.05

869.8 19.93 34.90 36.74 13.77 13.24 45.32 26.97 27.76 46.42 44.72

1 2839.8 36.02 63.06 66.38 24.87 23.91 81.88 48.73 50.16 83.87 80.81

7448.6 58.33 102.13 107.50 40.28 38.73 132.62 78.92 81.23 135.84 130.88

21230 98.48 172.42 181.50 68.01 65.39 223.89 133.24 137.14 229.34 220.95

138.6 9.99 10.02 10.35 10.06 9.82 14.55 8.03 8.05 12.52 12.17

492.8 18.84 18.89 19.52 18.97 18.51 27.44 15.14 15.17 23.61 22.94

2 1484.9 32.70 32.79 33.88 32.93 32.13 47.62 26.28 26.34 40.99 39.82

3488.7 50.12 50.26 51.93 50.48 49.25 72.99 40.28 40.38 62.83 61.04

9776.6 83.90 84.14 86.93 84.50 82.45 122.20 67.44 67.59 105.18 102.18

183.1 1.70 10.00 11.19 2.05 2.03 6.37 8.24 8.92 4.64 4.49

774.2 3.49 20.55 23.01 4.22 4.18 13.10 16.94 18.35 9.54 9.24

3 2535.9 6.31 37.20 41.65 7.63 7.57 23.71 30.67 33.21 17.26 16.72

6661.0 10.22 60.29 67.50 12.37 12.27 38.43 49.70 53.82 27.97 27.10

17614 16.63 98.04 109.77 20.11 19.95 62.49 80.82 87.52 45.48 44.06

271.3 2.74 14.13 15.87 2.95 2.95 4.91 5.09 5.57 3.21 3.12

1340.1 6.09 31.41 35.28 6.55 6.56 10.92 11.31 12.38 7.14 6.94

4 4426.6 11.07 57.09 64.12 11.91 11.93 19.85 20.56 22.50 12.97 12.62

12472 18.58 95.83 107.63 19.98 20.02 33.32 34.50 37.77 21.78 21.18

29374 28.51 147.07 165.18 30.67 30.72 51.14 52.95 57.97 33.42 32.51
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Fig. 4. Comparison of measured and predicted (s.d.o.f. case 3 approximation method, Eqs. (21) and (26)) r.m.s. strain

for panels 1 and 2. Narrowband response centred on the fundamental mode of vibration excited by the PWT. The

results from the s.d.o.f. Case 1 method (Eqs. (13) and (14) —Miles approximation) have also been plotted for

comparison: (a) panel 1 and (b) panel 2.
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Fig. 5. Comparison of measured and predicted (s.d.o.f. case 3 approximation method, Eqs. (21) and (26)) r.m.s. strain

for panels 3 and 4. Narrowband response centred on the fundamental mode of vibration excited by the PWT. The

results from the s.d.o.f. Case 1 method (Eqs. (13) and (14) —Miles approximation) have also been plotted for

comparison: (a) panel 3 and (b) panel 4.
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formulation can be made by considering the acoustic wavelength in terms of the structural
wavelength, i.e., if the acoustic half-wavelength is greater than the structural half-wavelength then
the joint acceptance of unity is valid. When the acoustic half-wavelength is very much greater than
the structural half-wavelength, the loading approaches the Miles assumption of uniform pressure
over the surface of the panel; however, as the acoustic half-wavelength becomes smaller than the
structural half-wavelength, the accuracy of the joint acceptance becomes more important to
correctly estimate the response. Blevins’ method should theoretically work best when the acoustic
and structural half-wavelengths match. A comparison of the acoustic and structural half-
wavelengths were obtained for the four experimental test panels by conducting a modal analysis
using the FE models developed in Ref. [8] with boundary conditions similar to that used the PWT.
A typical FE model of panel 1 is shown in Fig. 1(a), and the fundamental mode shape excited by
the PWT, calculated in the modal analysis for all four panels, is shown in Figs. 1(b)–(d). As can be
seen, it is fairly difficult to define the shape in terms of a number of structural half-wavelengths in
either direction. However, an approximation can be made by taking the structural half-
wavelength to be either the length of the panel or the distance between the spring supports (about
which the panel appears to deform). A comparison is now made between the structural and
acoustic half-wavelengths in both cases, the latter calculated using the relationship la ¼ c=ð2f Þ;
where c is the speed of sound in air ðE343 m=sÞ and f is the frequency of interest corresponding to
the natural frequency of vibration of the structure. The results are presented for each of the four
test panels in Table 9.
The results presented in Table 9 indicate that if the structural half-wavelength is taken to be

equal to the length of the panel, the approximation method should work best for panel 1 and 2,
although an accurate estimate of the joint acceptance will be more important for the former since
the acoustic half-wavelength is smaller than the structural half-wavelength. The same is also true
for panels 3 and 4, however the difference between the two wavelengths is greater which would
suggest a less accurate estimate compared to the first two panels. If however, the structural half-
wavelength is taken to be the distance between the spring supports, the better estimate should be
obtained for panels 3 and 4, with the worst estimate arising for panel 2.
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Table 8

Ratio of outer-to-inner r.m.s. strain for the predicted results using the s.d.o.f. approximation method (Case 3), and the

measured mean results (standard deviation values are given in brackets)

Panel go1/gi1 go2/gi2 go3/gi3 go4/gi4 go5/gi5

Predicted (s.d.o.f., Case 3)

1 2.27 0.77 0.76 3.37 3.38

2 1.46 0.80 0.78 1.24 1.24

3 3.76 0.82 0.80 2.26 2.21

4 1.79 0.36 0.35 1.09 1.06

Measured mean

1 1.89 (0.083) 0.80 (0.013) 0.85 (0.011) 2.83 (0.262) 2.85 (0.133)

2 1.55 (0.105) 0.86 (0.011) 0.79 (0.016) 1.39 (0.015) 1.26 (0.039)

3 2.37 (0.380) 0.88 (0.017) 0.90 (0.009) 2.50 (0.110) 2.37 (0.080)

4 1.19 (0.133) 0.44 (0.027) 0.39 (0.016) 2.39 (0.094) 1.91 (0.172)
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3.1. Approximation procedure

For broadband random acoustic excitation, where the bandwidth of excitation is greater than
the response bandwidth of the mode of interest, the estimate of the r.m.s. strain using Blevins
method is given by [6]

enr:m:s: ¼
pfnSppðf Þ

4zn

� �1=2
%e
*Pnc

: ð30Þ

The pressure spectrum level, Sppðf Þ; and the natural frequencies of vibration, fn; mode shapes, and
modal strains, %e were obtained as discussed in the previous section, and the characteristic pressure,
*Pnc; was calculated using the formula [6]

*Pnc ¼ mð2pfnÞ
2j *wnðxcÞj; ð31Þ

where m is the mass per unit area, fn is the natural frequency of vibration in the mode of interest,
and *wnðxcÞ is the maximum modal displacement. All of the inputs to Eq. (31) were obtained from
the FE model by conducting a modal analysis.
Blevins’ method [6] with J ¼ 1 is very similar to Case 2 of the present work. The only difference

lies in the fact that in Ref. [6], Sppðf Þ is the pressure spectrum at the reference point on the panel—
the pressure then varies away from this point in accordance with the mass weighted mode shape.
In the present work the space averaged pressure spectrum plays the role of Sppðf Þ; and this can
lead to differences in the response predictions.

3.2. Estimation of the r.m.s. strain response using Blevins’ method

All of the parameters needed to estimate the r.m.s. strain response of the doubly curved panels
to random acoustic excitation using Blevins’ method [6] are presented in Tables 2 and 10. The
damping was obtained from the experimental results from the PWT tests, as presented in Section
5.5.2, and the mass per unit area for each panel was constant at 5:24 kg=m2:
The predicted r.m.s. strain values using Blevin’s matched mode approximation procedure

(Eqs. (30) and (31)), for the 10 strain gauge locations on the four test panels, are presented in
Table 11 and Figs. 6 and 7. The results over-predict the r.m.s. strain that was measured, where the
latter values have been scaled according to the percentage contribution of the fundamental mode
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Table 9

Comparison of structural and acoustic half-wavelengths for the four test panels

J1D J1D Jn

Panel fn la=2 ls=la ls=la (Blevins, (Blevins, (Present,

(Hz) (m) ðls ¼ 0:912 mÞ ðls ¼ 0:505 mÞ ls ¼ 0:912 m) ls ¼ 0:505 m) Eq. (26))

1 219.02 0.78 1.17 0.65 0.917 1.023 0.263

2 164.30 1.04 0.87 0.49 1.058 0.878 0.181

3 272.62 0.63 1.45 0.80 0.755 1.084 0.180

4 288.67 0.59 1.54 0.86 0.704 1.086 0.144
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response to the overall r.m.s. response. The results using Blevins’ matched mode method are very
close to those obtained using Case 2, s.d.o.f. method presented in the previous section, where a
joint acceptance of unity has been used in both methods.
An improved estimate of the joint acceptance has been proposed by Blevins, where the

structural and acoustic waveforms were considered as sinusoids [6]. In addition, Blevins presented
a two-dimensional form of the joint acceptance function, where it was assumed that the acoustic
waves propagated along both co-ordinates and the modes of vibration are separable along these
two co-ordinates [6]. In the present study, it is assumed that the pressure loading is in the form of
travelling waves that propagate in one direction only, therefore Blevins one-dimensional joint
acceptance is considered here. The results for joint acceptance, calculated using Blevins method
for the one-dimensional case (Eqs. (46) and (47) in Ref. [6]) for both structural half-wavelength
approximations are presented in Table 9. In addition, the joint acceptance values calculated using
Eqs. (26), (25) and the modal displacement results, are also given in Table 9. The results clearly
show that improvements to the predicted response are made by considering the spatial
characteristics of the pressure loading and the structural response shape in more detail. The joint
acceptance values calculated using the present method (Eqs. (26), (25) and the modal
displacement results using the FE model) lead to good agreement between predicted and
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Table 11

Estimated r.m.s. strain for the 10 strain gauges located on the four test panels. Blevin’s approximation method

Panel Sppðf Þ Estimated r.m.s. strain ðmeÞ

ðPa2=HzÞ gi1 gi2 gi3 gi4 gi5 go1 go2 go3 go4 go5

174.9 31.43 55.03 57.93 21.71 20.87 71.46 42.53 43.77 73.20 70.52

869.8 70.10 122.72 129.18 48.40 46.54 159.35 94.83 97.61 163.23 157.26

1 2839.5 126.64 221.73 233.40 87.46 84.09 287.92 171.35 176.37 294.93 284.14

7448.6 205.11 359.11 378.03 141.65 136.19 466.33 277.52 285.65 477.68 460.21

21230 346.29 606.27 638.20 239.13 229.93 787.28 468.52 482.25 806.44 776.95

138.6 54.47 54.62 56.43 54.86 53.53 79.33 43.78 43.88 68.28 66.33

492.8 102.70 102.99 106.41 103.44 100.93 149.58 82.55 82.74 128.75 125.08

2 1484.9 178.27 178.78 184.71 179.56 175.20 259.66 143.29 143.62 223.50 217.12

3488.7 273.25 274.04 283.12 275.23 268.54 398.00 219.64 220.15 342.58 332.80

9776.6 457.43 458.74 473.95 460.74 449.54 666.26 367.68 368.53 573.48 557.12

183.1 13.30 78.41 87.80 16.09 15.95 49.98 64.64 70.00 36.38 35.24

774.2 27.35 161.24 180.53 33.08 32.81 102.77 132.92 143.94 74.80 72.46

3 2535.9 49.51 291.82 326.74 59.87 59.37 185.99 240.57 260.50 135.38 131.15

6661.0 80.23 472.95 529.54 97.02 96.23 301.44 389.89 422.19 219.41 212.55

17614 130.47 769.09 861.11 157.78 156.48 490.18 634.02 686.54 356.79 345.64

271.3 18.88 97.38 109.36 20.31 20.34 33.86 35.06 38.38 22.13 21.52

1340.1 41.95 216.42 243.06 45.13 45.20 75.26 77.92 85.31 49.18 47.83

4 4426.6 76.24 393.34 441.76 82.16 82.16 136.78 141.61 155.04 89.38 86.94

12472 127.98 660.23 741.51 137.68 137.90 229.58 237.70 260.25 150.03 145.93

29374 196.41 1013.23 1137.97 211.29 211.64 352.34 364.79 399.39 230.25 223.95
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Fig. 6. Comparison of measured and predicted r.m.s. strain for panels 1 and 2 using Blevins approximation method

(matched mode shape, Eqs. (30) and (31)). Narrowband response centred on the fundamental mode of vibration excited

by the PWT. The results from the s.d.o.f. Case 1 method (Eqs. (13) and (14) —Miles approximation) have also been

plotted for comparison: (a) panel 1 and (b) panel 2.
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Fig. 7. Comparison of measured and predicted r.m.s. strain for panels 3 and 4 using Blevins approximation method

(matched mode shape, Eqs. (30) and (31)). Narrowband response centred on the fundamental mode of vibration excited

by the PWT. The results from the s.d.o.f. Case 1 method (Eqs. (13) and (14) —Miles approximation) have also been

plotted for comparison: (a) panel 3 and (b) panel 4.

P.R. Cunningham et al. / Journal of Sound and Vibration 264 (2003) 605–637 627



measured r.m.s. strain, as demonstrated in the previous section. Using Blevins wavelength
correction method, the best improvement would be made when the structural half-wavelength is
taken to be equal to the length of the panel. However, for the present study where the panel
boundary conditions are non-conventional, the assumption of the structural response being
modelled as sinusoids cannot be used in this case. Blevins wavelength correction method was
developed to avoid extensive computation of the joint acceptance [6], whereas for the present
study it is necessary to compute the modal displacements using a finite element model of the
structure in order to calculate the joint acceptance.

4. Dynamic response prediction using the finite element method

The ANSYS finite element models of the four test panels were used to predict the dynamic
response to random acoustic excitation in the PWT. A full description of the FE models is
presented in a recent publication [8], and the boundary conditions applied are discussed in Part 1
of this study [7].
Two possible options exist for modelling the random acoustic pressure loading in the PWT. The

first involves dividing the structure into zones of equal surface area, in which the pressure PSD is
assumed to be spatially correlated over each zone. Ideally, each zone should be the size of each
finite element in the model, but this would create a huge amount of data in this case since each
model contains approximately 1200 elements. It would therefore be more convenient to define
larger zones, say eight in total, over the entire surface of the panel.
The second option is to model a series of travelling waves over the whole surface of the panel

within the frequency range of interest, and this was the option used to generate a solution for the
acoustically excited doubly curved panels located in the PWT. The analysis was divided into
10 Hz frequency bands from 47 to 545 Hz in which the acoustic wavenumber, k1 was held
constant. A harmonic analysis, using the modal superposition method, was carried out in each
frequency band with five sub-step calculations made, centred on the frequency step in the loop.
Within each of these frequency bands, the loading was applied in lines which ran the length of the
short side, and were spaced at intervals equal to the element edge length from one end of the panel
to the other along the long side. Unit forces were applied at the corner nodes on these lines, and
the real and imaginary parts of the load were defined according to the x1n

-location of the nodal
line, and the frequency step being analysed, which along with the convection velocity, c ¼
342:8 m=s (as previously calculated from experiments presented in Part 1 of this study), defined
the acoustic wavenumber, k1; hence

RfFng ¼ F0 cosðk1x1n
Þ ð32Þ

and

IfFng ¼ F0 sinðk1x1n
Þ; ð33Þ

where F0 ¼ 1 N; and k1 ¼ 2pfn=c: In this way, a travelling wave was simulated, as illustrated in
Fig. 8. As can be seen, as one progresses along the panel (in the x direction) each line of nodal
harmonic forces has a phase which will lag behind the previous line of nodal forces according to
the distance from the edge of the panel, i.e., at x1 ¼ 0: Therefore, for each harmonic solution
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where the frequency is kept constant, a travelling wave is simulated by virtue of this phase
difference between adjacent lines of nodal force. The concept is further illustrated in Fig. 9, where
the FE model of panel 1 is shown with the real part of the nodal forces shown for the frequency
band centred on, fc ¼ 240 Hz: The real part of the nodal forces is shown (a) in-phase, (b) with a
201 phase lag, (c) with a 401 phase lag, and finally (c) with a 801 phase lag with respect to the initial
phase angle. The solution process employed in ANSYS is illustrated in the flowchart in Fig. 10. As
can be seen, a harmonic solution with five sub-steps is carried out in each frequency band during
which the acoustic wavenumber was kept constant. Following this, the acoustic wavenumber is re-
calculated according to the next centre frequency, and the load is re-applied and the harmonic
solution obtained. The results are output in terms of the strain transfer function (in me=N) versus
the sub-step frequency values for each strain gauge location.
The strain PSD was obtained by first calculating the strain transfer function in terms of

pressure, taking the absolute value and squaring, before finally multiplying by the measured
pressure spectrum, Sppðf Þ obtained from the experiments (see Fig. 2)

Se ¼
Heðf Þ

ðF0N=AÞ

����
����
2

:Sppðf Þ; ð34Þ

whereHeðf Þ is the strain transfer function obtained from the FE model (in terms of force), N is the
total number of nodes on which the unit force, F0; was applied, and A is the panel surface area.
The results of the finite element analysis for gauge gi4 on panel 2 are shown in Fig. 11. Here, a

comparison has been made between the predicted (FE) and measured strain power spectral
density at the five overall sound pressure levels. The predicted response is almost entirely in the
first bending mode, with very little contribution evident from other modes, which was also found
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Fn = F0 cos(kaxn) + i F0sin(kaxn)

F0

t

F5

t

Fn

t

x1

x2

xn

F1

Fn

Doubly curved panel
(side view - long side)

F2

.  .  .  .

F0

F5

.  .  .

x5

Phase lag due to xn

Fig. 8. Illustration of the simulated travelling wave loading applied to the FE model. The phase of the individual line of

nodal loads was calculated according to the nodal line location and acoustic wavenumber (defined by the centre

frequency in the solution loop).
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to be the case for panels 1, 3, and 4. The measured response shows a contribution from the second,
and in some cases, the third mode. The FE predicted response compares very well with the
measured response, and it appears that the FE method under-predicts in the majority of cases
when one compares the maximum resonant responses. The r.m.s. strain levels were calculated and
compared with the measured r.m.s. responses over the same frequency bandwidth (47–550 Hz).
The results for each of the four panels are shown in Figs. 12 and 13. As can be seen, the FE
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Fig. 9. Finite element model of the four doubly curved panels with the travelling wave applied (four different wave

frequencies shown): (a) panel 1, f ¼ 240 Hz; (b) panel 2, f ¼ 340 Hz; (c) panel 3, f ¼ 440 Hz; and (d) panel 4,

f ¼ 540 Hz:
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Define 50 centre
frequencies from 50 Hz

to 500 Hz in10 Hz
increments

Calculate acoustic
wavenumber (ka = 2πfc/c)

Enter ANSYS Harmonic Analysis

Define solution frequency
band

Start loop: centre frequency
step, fc (c= 1 to 50)

Start loop: load application
= 1 to number of elements

along long side

Read xn

Calculate ℜ  and ℑ  parts of
force

Apply forces to line of
corner nodes

Define modal damping

Solve for five sub-steps
within frequency band

Expand complete solution

Fig. 10. Flowchart illustrating the harmonic analysis solution process used in ANSYS to simulate travelling acoustic

waves at frequencies from 47 to 550 Hz).
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method resulted in a consistent under-predicted r.m.s. strain response with the majority of the
results falling within a 30% confidence limit. The best results were obtained for panels 1 and 2,
which was also found to be the case for the s.d.o.f. analysis. For panel 4, the prediction for the
outer centre gauges, go4 and go5, gave the worst results. From the plot of the strain PSD, it is
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clear that for gauge go4 this can be attributed to a higher mode predominating the response and
therefore resulting in a higher r.m.s. value compared to the FE prediction, where there was found
to be little response from higher modes. In the FE analysis, the first four non-rigid-body modes
were included in the harmonic response, and damping values for each of these modes were
included. It is therefore unclear why higher modes are not as apparent in the FE results compared
with the measured response. However, the agreement between the experimental results and
predicted response was very good for the fundamental mode in all cases, and in some cases such as
for gauge gi4 on panel 2 (Fig. 13), the agreement for the higher modes was reasonable. One
possible explanation for the higher mode disagreement could be that in the PWT there was some
asymmetric excitation across the width of the panel (i.e., from the top to the bottom of the
aperture), which could have been enough to excite the higher modes which have nodal lines
running along the length of the panel. Since the excitation in the travelling wave method adopted
in the FE calculations was constant in phase across the width of the panel (y direction), any modes
with nodal lines along the length of the panel would not have been excited. In any case, it is clear
from the FE results that the travelling wave method works well for analysing the response of
structures to random acoustic excitation.
There is certainly potential for using the travelling wave method in the FE analysis to study the

response to various loading spectra, including spectra with discrete tones such as would be found
in the duct of an engine intake. Once the harmonic analysis has been carried out and the transfer
function obtained, it is a simple matter to find the response to different loading spectra. In
addition, it would also be worthwhile investigating the effects of changing various panel design
parameters and boundary conditions on the response to random acoustic excitation.

5. Summary

In this paper, three methods used to predict the dynamic response of the doubly curved
sandwich panels to random acoustic excitation have been presented. The first method, which
combines the classical s.d.o.f. approach with the finite element method, was fully investigated.
Three estimates of the spatial characteristics of the pressure loading were used and the results
indicated that the Miles [11] approach of a uniform pressure loading resulted in a gross
underestimation, while the unit joint acceptance approach (i.e., where the spatial characteristics of
the pressure loading exactly match the structural mode shape) resulted in an overestimation. A
more accurate estimate of the joint acceptance was formulated by using the results from the FEA
modal analysis to calculate the integral of the resonant response mode shape, and by considering
the spatial characteristics of the pressure loading to be a series of travelling waves. The resulting
estimates compared very well with the measured r.m.s. strain when the latter had been scaled
according to the percentage contribution of the fundamental mode to the overall response.
Blevins’ normal mode method was also used to predict the response [6]. This method is an

extension of the Miles approach which can be used for higher modes and complex shapes. In this
study, the mass-weighted mode shape approximation proposed by Blevins [6] was used, which is
very similar to the unit joint acceptance approximation described above. The results were very
similar to those found using the s.d.o.f. method with unit joint acceptance (Case 2), i.e. an over-
estimation. Comparisons have also been made between the calculated joint acceptance using the
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Fig. 12. Comparison of measured and predicted r.m.s. strain for panels 1 and 2 using the finite element method. Overall

r.m.s. value calculated between 47 and 550 Hz: (a) panel 1 and (b) panel 2.
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Fig. 13. Comparison of measured and predicted r.m.s. strain for panels 3 and 4 using the finite element method. Overall

r.m.s. value calculated between 47 and 550 Hz: (a) panel 3 and (b) panel 4.
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method of the present study (Eq. (26)), and the one-dimensional joint acceptance proposed by
Blevins [6]. Although the one-dimensional joint acceptance proposed by Blevins would lead to
improved estimates of the response of the doubly curved sandwich panels used in the present
study, it could not be used in practice because it relies on the sinusoids to model the structural
response. This was not feasible due to the non-conventional boundary conditions used to secure
the panels in the PWT, which lead to a more complicated mode shape.
For the finite element analysis, the chamfered edge finite element models were used [8], and the

spring supports used in the PWT were modelled. In order to model the response to random
acoustic excitation, the approach of finding the unit transfer function and multiplying by the
pressure PSD was adopted. The unit transfer function was found by conducting a series of
harmonic analyses with a simulated travelling wave load on the nodes of the panel. Solutions were
found at each frequency where the spatial characteristics of the travelling wave were calculated
and the unit force loads applied before each solution step. The results compared very well with the
measured response in terms of both the PSD and r.m.s. strain response, although for the former,
the higher modes found during measurement were not as apparent from the FE calculations.
In conclusion, the present work has demonstrated that the current approach adopted in the

design guides [1], i.e., the Miles equation, yields a very low theoretical prediction when the modes
of vibration of the panel include an out-of-plane rigid-body translation. In this instance,
the s.d.o.f. method described in this paper can provide very good theoretical predictions when the
applied loading distribution can be approximated with simple analytical expressions, and
the mode shape can be described using results from a finite element modal analysis. On average,
the predicted r.m.s. strains appear to be greater than the measured r.m.s. strains by a factor of
about 1.5, although in some cases the method is only in error by about 10%, and in other cases the
method under-predicts the r.m.s. strain. However, it must be noted that these comparisons do not
take into account experimental uncertainties in the measured strains, damping values, or pressure
spectrum. In addition, it has been shown that the finite element method can be used successfully to
predict the response when the applied loading distribution is modelled as a series of travelling
waves. It is clear from the present work that the estimation of the spatial distribution of the
pressure loading is a key input to the methods presented here, and future research into the
development of an improved estimation of this distribution, possibly using computational aero-
acoustics methods, is essential if predictions are to be further improved.

Acknowledgements

This work was supported by the Engineering and Physical Sciences Research Council (EPSRC).

References

[1] Engineering Sciences Data Unit, Vibration and acoustic fatigue, ESDU Design Guide Series, Vols. 1–6, ESDU

International, London.

[2] B.L. Clarkson, Stresses in skin panels subjected to random acoustic loading, The Aeronautical Journal of the

Royal Aeronautical Society 72 (1968) 1000–1010.

ARTICLE IN PRESS

P.R. Cunningham et al. / Journal of Sound and Vibration 264 (2003) 605–637636



[3] J.E. Sweers, Prediction of response and fatigue life of honeycomb sandwich panels subjected to acoustic excitation,

in: W.J. Trapp, D.M. Forney (Eds), Acoustical Fatigue in Aerospace Structures, Syracuse University Press,

Syracuse, NY, 1964, pp. 389–402.

[4] J. Soovere, Random vibration analysis of stiffened honeycomb panels with beveled edges, American Institute of

Aeronautics and Astronautics Journal of Aircraft 23 (6) (1986) 537–544.

[5] B.L. Clarkson, Review of sonic fatigue technology, NASA Technical Report CP-4587, 1994.

[6] R.D. Blevins, An approximate method for sonic fatigue analysis of plates and shells, Journal of Sound and

Vibration 129 (1989) 51–71.

[7] P.R. Cunningham, R.G. White, Dynamic response of doubly curved honeycomb sandwich panels to random

acoustic excitation. Part 1: Experimental study, Journal of Sound and Vibration 264 (3) (2003) 579–603, this issue.

[8] P.R. Cunningham, R.G. White, G.S. Aglietti, The effects of various design parameters on the free vibration of

doubly curved composite sandwich panels, Journal of Sound and Vibration 230 (3) (2000) 617–648.

[9] L. Meirovitch, Elements of Vibration Analysis, McGraw-Hill, New York, 1986.

[10] D.E. Newland, An Introduction to Random Vibrations, Spectral and Wavelet Analysis, Longman Scientific &

Technical, London, 1993.

[11] J.W. Miles, On structural fatigue under random loading, Journal of the Aeronautical Sciences 21 (1954) 753–762.

[12] P.R. Cunningham, Response Prediction of Acoustically-Excited Composite Honeycomb Sandwich Structures with

Double Curvature, Ph.D. Thesis, University of Southampton, 2001.

[13] J.N. Little, L. Shure, For Use with MATLAB, Signal Processing Toolbox, Vol. 95, The Math Works Inc., Natick,

MA, Chapter 2.

ARTICLE IN PRESS

P.R. Cunningham et al. / Journal of Sound and Vibration 264 (2003) 605–637 637


	Dynamic response of doubly curved honeycomb sandwich panels to random acoustic excitation. Part 2: Theoretical study
	Introduction
	The single-degree-of-freedom approximation
	Case 1: H(x,omega)=1
	Case 2: H(x,omega)=phin(x)
	Case 3: general H(x,omega)
	Estimation of the r.m.s. strain response using the single-degree-of-freedom approximation
	Natural frequency of vibration, mode shapes, and modal strains
	Reference pressure spectrum level, Spp(fn) and modal damping, zetan
	Comparison of experimental and theoretical results for r.m.s. strain


	Application of Blevins’ normal mode method
	Approximation procedure
	Estimation of the r.m.s. strain response using Blevins’ method

	Dynamic response prediction using the finite element method
	Summary
	Acknowledgements
	References


